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Threshold Models of Diversity: 
Chinese Restaurants, 
Residential Segregation, 
and the Spiral of Silence 

Mark Granovetter* and Roland Soongt 

In many binary decisions, a person 's choice depends in part on the 
composition of the group that has already made one or the other choice. In 
deciding whether to live in a neighborhood, a person may consider the ethnic 
composition of the neighborhood. In deciding whether to speak out on a public 
issue, a person may consider the proportion of previously expressed opinions 
that are the same as his. Substantial literatures have grown up around these 
two examples, which go under the rubrics of residential tipping and 
pluralistic ignorance. We develop a mathematical model that applies to all 
such binary situations and illustrate it especially by the examples of resi- 
dential segregation and public opinion. The model builds on and generalizes 
previous work on these subjects, and it is related to but distinct from the 
authors' earlier work on threshold models of collective behavior. We conclude 
with a report on preliminary attempts at empirical measurement. 
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D. Garth Taylor, Steve Rytina, Thomas Schelling, and Harrison White have 
improved the paper. Partial support of the work was provided by a John Simon 
Guggenheim Memorial Foundation Fellowship and by NSF grant SPI 81-65055 to 
the first author. 
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1. INTRODUCTION 

How you choose between two alternatives may depend in part 
on how others have chosen before you. This dependence may involve 
the proportion or number (in some reference group) who have previ- 
ously made one or the other decision. Whether you join a riot or buy a 
product may hinge on the proportion of others who have already done 
so; then, how many have not rioted or bought is as important as how 
many have. In some situations, absolute numbers seem more im- 
portant. Whether you turn on your headlights at some given level of 
daylight probably depends on the number of other drivers you have seen 
do so; those who have not may be ignored. This dependence on either 
proportions or numbers can be modeled with what we have called 
threshold models of collective behavior (Granovetter 1978; Granovetter 
and Soong 1983, 1986). 

There are situations typical of socially differentiated populations 
that require a different model. As with absolute numbers, the focus 
may only be on that part of the reference group that has made a 
particular decision, but there may be a special concern with the group 
composition of that part. Few would notice what kind of person turns on 
his headlights, but many might avoid a riot involving whites and 
blacks until their own group exceeded a certain proportion of the 
rioters. Would-be customers of an ethnic restaurant may be very 
attentive to the proportion of the restaurant's clientele that is from the 
relevant ethnic group. Here, one attends only to the composition of 
those who are eating, partly because the set of those who chose not to 
eat in the restaurant is not easily visible, though it may be well defined. 
Or consider a club whose members are drawn from some definite, 
ethnically heterogeneous, eligible population. Individuals may be will- 
ing to join only when the proportion of current members who are from 
their own group exceeds some minimum; they pay no attention to those 
eligible but outside the club. 

These situations arise when the social composition of those 
making a decision-to enter a riot, restaurant, or club-is considered 
important, for whatever reasons. In clubs, pure social snobbery may be 
rationalized by a belief that only members of one's own group are 
congenial companions. This belief is usually grounded in real or 
imagined barriers of language, culture, or behavior. In an ethnic 
restaurant, the proportion of diners from the relevant ethnic group 
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may be taken as a signal (Spence 1974) of the quality and authenticity 
of the cuisine. In deciding whether to engage in some task, individuals 
may be influenced by a belief that technical competence is available in 
only one of the groups, or that one can best function cooperatively, 
keep secrets, and act unselfishly in dangerous situations with co-ethnics. 
Thus, units of spies and soldiers have often been ethnically homoge- 
neous. However, purely instrumental calculations can also lead to 
preferring that a group other than one's own be dominant, as when 
minority parents attempt to enroll their children in a school with a 
large proportion of the majority group, suspecting that it will be 
favorably endowed with resources.! 

2. RESIDENTIAL TIPPING AND THE SPIRAL 
OF SILENCE 

Our interest here is not in explaining such preferences but in 
constructing a formal model that illuminates their consequences. As we 
do so, we will refer repeatedly to two illustrations, each with a 
substantial associated literature. They are substantively quite different 
from one another and have not previously been discussed together. The 
differences will be useful in indicating the range of phenomena that 
can be subsumed under this model and in suggesting some of the 
modifications needed for particular applications. 

The first illustration is residential segregation. Thomas Schell- 
ing's seminal papers (1971, 1973, 1978) develop a model for bounded 
neighborhoods. Each individual resides in the neighborhood "unless 
the percentage of residents of opposite color exceeds some limit. Each 
person, black or white, has his own limit. ...If a person's limit is 
exceeded in this area he will go somewhere else-a place, presumably 
where his own color predominates or where color does not matter" 
(1971, p. 167). We use Schelling's account to help generate our formal 

I When interest centers on the proportion from one particular group, it is 
irrelevant whether that group is one's own, since the population can then be 
divided into two categories: the particular group and all the others. Joining the riot 
only when r percent of the rioters belong to one's own group is exactly equivalent 
to joining only when (1 - r) percent are from the other group(s). For simpler 
exposition, we will usually speak of two groups; we will show that generalization to 
n groups is conceptually (if not computationally) straightforward. 
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model, which subsumes his results and permits important generaliza- 
tions. 

The second illustration comes from the literature on public 
opinion. Discussions of "pluralistic ignorahce" have observed that 
individuals may fail to speak out on important issues because they 
falsely perceive their own opinion to be in the minority. Thus, "moral 
principles with relatively little popular support may exert considerable 
influence because they are mistakenly thought to represent the views of 
the majority, while normative imperatives actually favored by the 
majority may carry less weight because they are erroneously attributed 
to a minority" (O'Gorman and Garry 1976, p. 450). Noelle-Neumann 
(1974, 1977, 1984) has introduced some dynamics to this literature with 
the theory of a "spiral of silence." Her model was inspired by a 
situation in West Germany in the late 1960s, when followers of the 
Christian Democratic Party didn't express themselves publicly but 
Socialist supporters did. This "encouraged people either to proclaim 
their views or to swallow them and keep quiet until, in a spiraling 
process, the one view dominated the public scene and the other 
disappeared from public awareness as its adherents became mute" 
(1984, p. 5). Taylor suggests that "one's perception of the distribution 
of public opinion motivates one's willingness to express political 
opinions. The act of self-expression, however, changes the global 
environment of opinion, altering the perceptions of other persons and, 
ultimately, affecting their willingness to express their own opinions" 
(Taylor 1982, p. 311, 1986). 

Noelle-Neumann's extensive public opinion research in Germany 
has confirmed in many different ways that individuals have definite 
views on what others believe and that their assessments of those beliefs 
affect their own willingness to speak out (1984, chap. 2). Similarly, in 
an analysis of survey data on conflict in Boston over court-ordered 
busing to achieve school desegregation, Taylor (1986) notes that the 
extent to which people opposed to busing expressed this opposition-in 
ways ranging from discussing it with their friends and neighbors to 
supporting illegal protest actions and boycotts-depended strongly on 
the extent of opposition to busing that they perceived among their 
neighbors. For example, 56 percent of those who thought none of their 
neighbors agreed with the court decision discussed their (negative) 
opinions on busing frequently or very frequently with them, 41 percent 
of those who thought 10 percent or so of their neighbors agreed with it 
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did so, and 28 percent of those who thought 25 percent or more of their 
neighbors agreed with it did so. 

Our formal model incorporates many of these insights but drops 
the assumption-prominent especially in Noelle-Neumann's work 
that concern about being in the majority or minority has a special 
status. Instead, we offer a more general argument that each individual 
has some sensitivity to the predominance of his own opinion among 
those previously expressed but that these sensitivities may vary continu- 
ously. As in previous work on threshold models, small changes in the 
distribution of sensitivity will have large impacts on equilibrium out- 
comes. This may help explain why " the intensity of anti-busing protest 
varies even though the level of opposition to busing is relatively 
constant in American cities" (Taylor 1983, p. 21). 

Both cases illustrate the situation of interest to us. In the first, 
people are sensitive to the racial proportions in a neighborhood and 
reside there if those proportions are suitable. In the second, people 
express their opinion if it agrees with that of some proportion of those 
who have previously expressed themselves. The racial makeup of those 
interested in the neighborhood but not living in it and the opinions of 
those who are silent do not count, partly because they cannot easily be 
determined. A formal model should predict the exact composition of 
the neighborhood, or of expressed public opinion, and whether that 
composition settles down to some equilibrium. In all the examples we 
have given, the size, homogeneity, and diversity of the final outcome 
are of special interest. Therefore, for simplicity, we refer to our models 
as models of diversity. 

3. THRESHOLD MODELS OF DIVERSITY 

Suppose that each individual belongs to one of two groups and 
is characterized by a threshold, i.e., the proportion he would have to 
see of all those choosing one side of a binary decision who are in his 
own group before he would also make that same choice. For example, 
a black man is said to have a threshold of 35 percent if he is unwilling 
to live in a neighborhood unless it is at least 35 percent black. An 
opponent of nuclear power who would not speak up until 60 percent of 
expressed public opinion agreed with his view has a threshold of 60 
percent. (Note that threshold, as it is used here, differs from its use in 
Granovetter [ 1978] and in subsequent work on threshold models, 
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because those making one side of the binary decision are ignored. 
Strictly speaking, we should use some qualifier like diversity-type 
thresholds, but we hope the difference will be clear from context.) 

Whites and blacks cannot change their color, but individuals 
can change their opinions. The model we develop here abstracts from 
such change and is thus best suited to the study of cases in which 
expressions of opinion may change but the actual opinions do not. 
Such stability of opinions may be common. In his book on the Boston 
school busing controversy, Taylor (1986) notes that the proportion 
opposed to busing was quite stable over 22 months and five waves of 
surveys, beginning at 86 percent in wave 1 and varying from 89 to 91 
percent from waves 2 to 5. The rancorous conflict of the period did not 
much affect opinions. Moreover, though individuals cannot change 
their color, the population racial composition does change, and this 
may have a similar impact on the workings of the model. 

Our notation and discussion will stress the segregation interpre- 
tation, since it would be awkward and redundant to develop two 
separate stories for each equation and analysis. The reader with special 
interest in public opinion should be able to supply the relevant story in 
each case, and we will draw on this interpretation for contrast and 
generality. Assume (as Schelling does) that there is a fixed number of 
whites, NA, and blacks, Nb, available to live in the neighborhood and 
that any number may live there in a given time period. Then, 
neighborhood population may fluctuate drastically over several periods 
and may at times be reduced to zero. This fluctuation is one reason 
that the neighborhood interpretation is not entirely natural, though we 
will introduce capacity constraints later to make it more plausible. 
Such fluctuations are easier to imagine for the public opinion interpre- 
tation, in which the transaction costs of entering or leaving the set of 
those expressing their opinions are low. 

Outcomes are determined by the exact distributions of thresholds. 
We will refer especially to the cumulative distribution functions (cdf's) 
for black and white thresholds. Thus, FU,(p,,) gives the proportion of 
whites whose threshold is less than or equal to the proportion of whites 
in the neighborhood, given by pa,. For example, if F,(0.25) = 0.65, 65 
percent of the whites have thresholds less than or equal to 25 percent. 
Then, if the neighborhood is at some time exactly 25 percent white, 65 
percent of the white population (including those currently nonresident) 
will be willing to live in it. If this is more than the number of whites 
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already in the neighborhood, there will be an influx of whites; if less, 
there will be an outflux. For blacks, the corresponding cdf is Fb( Pb). 

We set up the dynamics in discrete time: At the beginning of 
each period, each individual, black or white, in or out of the neighbor- 
hood, observes the racial makeup of the neighborhood in the previous 
period. If his threshold is met or exceeded (i.e., if the proportion of his 
own group in the neighborhood is equal to or higher than his minimum 
proportion), he will reside in the neighborhood that period; otherwise, 
he will not.2 This leads us to a pair of coupled first-order difference 
equations. Let n (t) be the number of whites in the neighborhood at 
time t, and let nb(t) be the number of blacks. The proportion of whites 
at t is then p.(t) = n (t)/[n (t) + nb(t)]. Suppose the neighborhood 
is 25 percent white at time t. What proportion of the neighborhood will 
be white at t + 1? Those whites resident at t + 1 will be exactly those 
whose thresholds are less than or equal to 0.25. If F.(0.25) were 0.65, 
and if N. were the total population of whites available to live in the 
neighborhood, then at t + 1 we would have 0.65N, whites in residence. 
This is the same as saying that 

nw(t + 1) = lVwFw[ pw(t)]. (la) 

By the same reasoning, we have for blacks 

nb(t + 1) = NbFb [Pb(t)] (lb) 

In general, we expect the cdf's to be nonlinear, and exact solution of 
the system for explicit time paths will rarely be possible, though system 
equilibria may nevertheless be found explicitly. By forward recursion 
we can always trace out any desired segment of the time path. 
Equilibrium requires that nw(t + 1) = nw(t) and that nb(t + 1) = nb(t). 
Call these equilibrium numbers of whites and blacks w and b. Sub- 
stituting into equations (la) and (lb) gives us as conditions for equi- 

2 Those who shift in or out of the neighborhood during this period do so in 
no particular order. We do not make Schelling's "somewhat plausible assumption 
that, as between two whites dissatisfied with the ratio of white to black, the more 
dissatisfied leaves first-the one with lesser tolerance" (1971, p. 168). Schelling 
asserts that this assumption is needed for his results, but our model will reproduce 
them in detail without it. A weaker version of the assumption follows from our 
setup: If in two successive periods there is a net outflow of whites, all those leaving 
in the first period are more tolerant (i.e., have a lower threshold) than all those 
leaving in the second. 
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librium 

w = N,,F. [ wl(w + b)], (2a) 

b = NbFb[bl(w + b)]. (2b) 

Any admissible pairs (w, b) that satisfy these equations are equilibria. 
These can always be approximated by simultaneously graphing the 
two equations and noting all intersections. 

Whether a particular equilibrium actually occurs depends on its 
stability. An equilibrium is asymptotically stable if the system moves 
back toward it after a slight displacement; it is unstable if the system 
moves further away. Thus, stable equilibria attract and unstable 
equilibria repel all nearby trajectories. We expect, in practice, to see 
only stable equilibria. We may assess the stability of an equilibrium by 
linearization, i.e., by taking the system as linear near the equilibrium 
point and approximating its behavior by a Taylor expansion that omits 
terms of order 2 or higher. This yields the following test for stability 
(see, e.g., Luenberger 1979, pp. 324-28). Consider the matrix of first 
partial derivatives of the system, evaluated at an equilibrium. That 
equilibrium is stable if and only if all eigenvalues of the matrix are 
strictly less than unity and unstable if any is greater. The test fails (is 
uninformative) if none exceeds unity but one or more are equal to it. 
Define w0 as n.(t), w, as nZ,(t+ 1), bo as nb(t), and b1 as nb(t+ 1). 
Then, the relevant matrix of partials is 

[ 3w/ldiwo dw1/dbo] 

Ldbl w0 dblldbo 

Recall that w and b denote the equilibrium numbers of blacks and 
whites, and let f, be the probability density of thresholds for whites 
and fb the probability density for blacks. (These are just the usual first 
derivatives of the cdf's Fw and Fb.) Computing the partial derivatives 
above and evaluating them at some equilibrium point (w, b) then 
yields 

N,f,[ w/(w + b)] [b/(w+ b)2] -N,11f,,[ w/(w + b)] [w/(w + b)2] 1 
-Nbfb[ b/(w + b)] [b/(w + b Nbf [ b/(w + b)] [w/(w + b)] j 

One eigenvalue of this matrix is zero; stability then depends on 
whether the nonzero eigenvalue is less than unity. This eigenvalue is 

N,fJJw/(w+b)] [b/(w+b)2 +?Nbfb[b/(w + b)] [w/(w + b)2]. 

(3) 
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It is qualitatively clear from this expression that the smaller the 
absolute sizes of the two groups and the larger the numbers of 
individuals in the neighborhood at equilibrium, the greater the likeli- 
hood of stability. For the public opinion interpretation, this implies 
that the smaller the number holding an opinion and the larger the 
number expressing one, the greater the likelihood of a stable distribu- 
tion of expressed opinion. It follows that, other things equal, an issue 
on which large numbers have an opinion but few express it will 
engender volatile distributions of public expression. More stability will 
occur in a small population in which many express their views. 

4. USING THE MODEL: STRAIGHT-LINE TOLERANCE 
DISTRIBUTIONS 

We first apply the model to the straight-line tolerance distribu- 
tions that are Schelling's main illustrations (1971, pp. 167-75; 1978, 
pp. 155-64), since these have received wide attention. Our more 
formal account clarifies the interplay between model parameters and 
neighborhood outcomes, allowing assessment of the parameter ranges 
over which one can expect Schelling's counterintuitive results. Our 
Figure 1 is comparable to the first part of Schelling's Figure 18 (1971, 
p. 169; or see Schelling 1978, fig. 9, p. 158), except that the y intercept 

FIGURE 1. Q(r) = proportion of whites with tolerance ratios greater than or equal to r. 
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is at 5 rather than 2 (see Schelling 1971, p. 171, or 1978, p. 161). On 
our y axis are what Schelling calls the tolerance ratios of whites for 
blacks, i.e., the maximum ratio of blacks to whites that whites can 
accept and still live in the area. Like Schelling, we assume that an 
identical distribution governs blacks' tolerance ratios for whites. On the 
x axis is the proportion of whites with ratios greater than or equal to 
that given by the y coordinate. Thus, the point (0.25, 3.75) indicates 
that 25 percent of whites have a black-to-white tolerance ratio of 3.75 
to 1, or greater.3 Denote the proportion of individuals with tolerance 
ratios greater than or equal to some given ratio r by Q(r). Generaliz- 
ing the straight-line distribution of Figure 1, suppose the line intersects 
the y axis at some value, R. By definition, the line must intersect the x 
axis at unity, so its slope is just -R. The equation for the line is then 
r-(-R) Q(r) + R, so Q(r) = 1 -(r/R). 

A white who would live in the area as long as the proportion of 
blacks was less than or equal to one in four has a tolerance ratio of 
1/3; but this is, in our terms, a threshold of 0.75. If some proportion 
of the population have tolerance ratios greater than or equal to a given 
r, then this proportion have thresholds less than or equal to the 
corresponding s. For example, those with tolerance ratios greater than 
or equal to 1/3 have thresholds less than or equal to 0.75. They will 
not live in a neighborhood unless three out of four of its residents are 
their own color. Denote the cdf of thresholds by F, the thresholds 
themselves by s, and the tolerance ratios by r. Then, r = (I/s) - 1.4 It 

follows that in general, Fs) = Q(r) = Q( 1 s) - 1]. Substituting in 
our equation for the straight-line tolerance distribution, we have F(s) 

=1-{[(1/s)-1]IR} = (1 R)(1 + R - (1/s)) as the cdf of thresholds 
for a straight-line tolerance distribution that intersects the y axis at R. 
Note, however, that for r > R, Q(r) = 0: By hypothesis, no one has a 

3Schelling refers to this curve as a cumulative distribution of tolerances, 
but this is confusing, since cumulative distributions usually indicate proportions less 
than or equal to the value of the random variable. It may also confuse readers that 
the axes are reversed from the usual depiction of cdf's, perhaps a carryover of the 
axis reversal practiced by economists in supply-and-demand schedules, in which 
price, the independent variable, is on the y axis. 

4 We prefer thresholds to tolerance ratios because ratios make it awkward 
to discuss those willing to live in a neighborhood or express an opinion before other 
members of their group have done so; i.e., the ratio requires division by zero. In 
our terms, such individuals simply have a threshold of zero. Thresholds are 
identical to what Schelling (1973) called individual tipping points. 
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tolerance ratio greater than R. Correspondingly, for s < (1/(1 + R)), 
we have F( s) = 0. 

Thus, F is defined piecewise over the argument s, and though 
straight-line tolerance distributions appear simple at first, the piecewise 
property implies that the pair of difference equations operating will 
vary depending on the exact values of the variables at a given time. 
For example, from equation (la), we have the relation n.(t + 1) = 

NWFW(p.(t)). But to evaluate this relation here, we must note that 
when the argument of F is less than (1/(1 + R)), F= 0. In this case, 
pw(t) <( 1/(1 + R)), which occurs if and only if [ nb(t)/nW(t)] > R. 
When F. is zero, the difference equation for whites reduces to n.(t + 
1) = 0. As the distribution of tolerances implies, when the current ratio 
of blacks to whites exceeds R, no white will want to live in the 
neighborhood. When the argument of F is greater than or equal to 
(17/(1 + R)), we have F.(p.(t)) = (1/R)[ 1 + R-(I /pw(t))] = 1- 
[nb(t)/RnW(t)] and a corresponding equation of n (t + 1) = Nwt 1 - 
[nb(t)/Rn (t)]}. The analysis is exactly symmetrical for blacks. It 
follows that there are four different ways to define the system of 
difference equations: 
1. If nb(t)/nW(t) > R, nW(t)/nb(t) < R, then 

n.( t + 1 ) = O, (4a) 

nb(t+ 1) =Nb{l - [nw(t)/(Rnb(t))I}- (4b) 

2. If nb(t)/nW(t)?R, Wn.(t)/nb( t)> R, then 

n.(t + 1) = Nw1 - [(nb(t)/RnW(t))I ) ' (4c) 

nb(t + 1) = O. (4d) 
3. If nb(t)/nW(t) > R, nW(t)/nb(t) > R, then 

n.( t + 1 ) = O, (4e) 

nb(t + 1) = O. (4f) 
4. If nb(t)/nW(t) < R, nW(t)/nb(t) < R, then 

n.(t + 1) = Nw1 - [nb(t)/(Rnw(t))] }, (4g) 

nb(t + 1) = Nb(l -{nW(t)/[(Rnb(t))]} (4h) 

For each situation, note that at equilibrium, n.(t + 1) = n.(t) = w and 
nb(t + 1) = nb(t) = b. In situation 1, w must = 0; substituting into (4b) 
gives b = Nb. It is easily verified that (0, Nb) satisfies (4a) and (4b). The 
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eigenvalue from equation (3) is then Fj(w/(w + b)) = Fw(O) = 0, so 
fw(0) also = 0. This zero eigenvalue indicates stability. 

Situation 2 is exactly symmetrical to situation 1, so we have a 
second stable equilibrium (N., 0). In situation 3, each group finds too 
many of the other, and everyone leaves the neighborhood. The equi- 
librium (0,0) satisfies the two equations, but derivatives of any order 
are equal to zero, and linearization fails in this degenerate case: No 
Taylor approximation provides any information unless the relevant 
matrices of derivatives are nonzero. But we can see by inspection the 
stability characteristics of this equilibrium. If a perturbation results in 
numbers of whites and blacks within the parameters of situation 3, the 
equilibrium is stable, because the system then returns to (0,0). If a 
perturbation results in a situation other than 3, the system moves away 
from that equilibrium.5 But stable equilibria in other situations must 
also be defined in this way: Any perturbation that takes the system out 
of the parameter region within which an equilibrium was defined leads 
the system to a stable equilibrium within the new region. Therefore, we 
can simply say that the equilibrium of region 3 is stable. 

In situation 4, the system is governed by a pair of nontrivial 
equations. Substituting the equilibrium conditions into (4g) and (4h) 
gives 

w2= (N./R)(Rw - b), (4i) 

b2=(Nb/R)(Rb-w). (4j) 

We can solve (4i) for b, yielding (Rw) - (R/N.)w2, and substitute this 

5 But the system will not enter situation 3 unless R < 1. This can be shown 
as follows: Suppose at time t we have nW(t) whites and nb(t) blacks. If n,,(t) = 

nb(1), then situation 3 can occur only if R < 1. If na,(t) does not = nb(1), suppose 
that nW(t) > nb(t). Then, nW(t)/nb(t) > 1 and nb(1)/nW(1) < 1; thus, they can 
both be greater than R only if R < 1. It follows immediately that if R is less than 
1, both ratios cannot be less than 1, so that in this circumstance, region 4 cannot be 
entered. Thus, for any given value of R, the system may enter either regions 1, 2, 
and 3 (R < 1) or regions 1, 2, and 4 (R ? 1). If we plot nb(t) on the vertical axis 
and nj(t) on the horizontal when R < 1, the region of stability for the equilibrium 
in region 3 (0,0) is bounded by the two rays from the origins given by nb(t) = 

nw(t)/R on the left and by nb(t) = Rn1,,(t) on the right. To the left of the first ray, 
we are in region 1; to the right of the second ray, we are in region 2. As R 
approaches 0, the middle, stable region for the equilibrium of (0,0) increases, and 
the size of the other two regions approaches zero asymptotically. This is intuitively 
reasonable, since a very small value of R implies that each group finds the other 
nearly intolerable and everyone leaves in droves, emptying the neighborhood. 
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into (4j). This produces a fourth-degree equation for w: 

O = w{(R2/N2)w3-(2R2/N )w2 

+[R2+(Nb/NW)R]w+ [(NIIR)-NbR]} (4k) 

Since the situation for blacks is symmetrical, the same equation (with 
interchanged subscripts) applies to b. Each of these equations has four 
roots. For a corresponding pair (w, b) to be an admissible equilibrium, 
it must fall within the scope of situation 4, w and b must both be real 
and positive, and we must have w < N. and b < Nb. One root (0,0) is 
outside the boundaries of situation 4, so we have a maximum of three 
equilibria here. 

Some formidable algebra would yield a general expression for 
the three equilibria, but it is simpler to use approximations for specified 
parameters. One can either plot equation (4k) and note the approxi- 
mate location of zeroes or go back to equations (4i) and (4j) and plot 
them together, noting the intersections.6 In the special case in which 
R = 5 and N,, = Nb= 100 (as in Schelling 1971, p. 171, fig. 19; 1978, 
pp. 161-62, fig. 10), the three solutions are found to be approximately 
(25.36, 94.64), (80, 80), and (94.64, 25.36). All are valid equilibria and 
can be seen to work by substitution back into the original difference 
equations. The eigenvalue test shows that the first and third are 
asymptotically unstable and the middle is stable. For this set of 
parameters, then, we have three stable equilibria (one each from 
situations 1, 2, and 4) and two unstable equilibria (from situation 4). 
The (0,0) equilibrium of region 3 is irrelevant here, because when 
R > 1, this region cannot be entered. 

5. A GRAPHICAL METHOD 

Some of these results can be seen graphically by generalizing a 
method suggested by Schelling (1971, p. 169). He draws curves that 
depict the maximum number of the other group that any fixed number 
of a group can tolerate. To determine the maximum number of whites 

6 This is, in effect, what Schelling has done in Figures 18-29 (1971) and 
Figures 9-12 (1978, pp. 158-64), though he does not interpret his procedure as 
simultaneous graphing of equilibrium equations and does not note those intersec- 
tions that correspond to unstable equilibria. See our further discussion in the next 
section on graphical methods. 
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that a given number of blacks could tolerate (i.e., would be willing to 
live in a neighborhood with), find the black with the highest threshold, 
since that individual has the least tolerance for whites. (We assume that 
the b blacks in question consist of the black with the lowest threshold, 
the black with the next lowest, and so on, up to the bth from the 
bottom of the distribution. This follows from the definition of the task, 
which is to determine the maximum number of whites that exactly b 
blacks could live with.) For the public opinion interpretation, the 
curves indicate the largest number of those with opposite opinions that 
some fixed number could tolerate and still express their opinion. 

By definition of F(s), the cdf of thresholds, the highest threshold 
s, represented among k percent of the population, is the s that satisfies 
the equation F(s) = k. Here, we have k = b/Nb and s = [b/(w + b)]. 
But when b, Nb, and F are already given, solving this equation yields 
not only the highest threshold among blacks, but also w, precisely the 
maximum number of whites the b blacks could tolerate. Suppose, for 
example, that we wanted to know how many whites the most tolerant 
70 in a population of 100 blacks could live with and that the cdf 
indicated that Fb(O.40) = 0.70, i.e., that 70 percent of the black popula- 
tion is willing to live in a neighborhood that is 40 percent or less black 
or, similarly, that the highest threshold represented within that part of 
the black population is 40 percent. (This example is drawn from a 
straight-line tolerance distribution, with R = 5. See the cdf in Figure 
2.) Thus, all these 70 blacks will be satisfied as long as [70/(70 + w)] 
> 0.40, i.e., when w < 105. The graphical procedure for constructing 
the curve is as follows. For a given number b, find the proportion 
(b/Nb) on the vertical axis of the cdf, draw a horizontal line to the cdf, 
and drop a line to the x axis to find the argument of F that 
corresponds to that proportion. Once that argument is found, the 
maximum number of whites can be computed. For each b, then, there 
is some number w, a function of b that we will call e(b). Here, 
105 = e(70). 

For the 70 blacks and 105 whites in this example, blacks are just 
40 percent of the neighborhood, so all blacks are satisfied. But no more 
blacks will enter the neighborhood, since the next black will, by 
definition of cdf, have a threshold higher than 40 percent. For blacks, 
then, the points on e(b) represent an equilibrium situation-thus the 
notation "e." Therefore, it is not surprising that the equation b/Nb = 

F[ b/(w + b)], from which we derived points for e(b), is exactly the 
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FIGURE 2. F(s) = (I/R)[l + R - (I/s)], where R = 5: The cdf of a straight-line tolerance 
distribution. 

1.0 

F(s) 

0.8 

0.6 - 

0.4 

0.2 - 

0 III 
0 1/6 0.2 0.4 0.6 0.8 1.0 

S 

equilibrium equation (2b) for blacks. The situation is symmetrical for 
whites, and e(w) also corresponds to equation (2a) above.7 

Figure 2 gives the cdf for a straight-line tolerance distribution. 
The general equation is F(s) = (1/R)[1 + R - (1/s)], where s 
(thresholds) is greater than [1/(1 + R)], and F(s) = 0 otherwise; here, 
we let R = 5. Though system equations are piecewise (falling into four 

7 Our definition of these curves is broader than Schelling's. He finds the 
maximum number of whites that a given number of blacks could live with. But we 
define e(b) to be all those numbers of whites for which some given number of 
blacks would remain unchanged in the next time period. The two definitions are 
identical except when the cdf has a horizontal segment, but in the discrete 
distributions we would find empirically, this is common. Then the procedure of 
finding b/Nb on the vertical axis of the cdf (drawing a horizontal line to the cdf 
and dropping a line to the x axis to find the argument of F that corresponds to 
that proportion) no longer yields a unique solution. In such cases, e(b) is not a 
single-valued function, because there is a range of numbers of whites for whom 
there would still be just b blacks in the next time period. When we later introduce 
preferences for integration, we will find that the definition given by the task of 
finding the maximum tolerable number of the other group is no longer apt in 
developing a graphical method but that our more general definition continues to 
apply. 
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FIGURE 3. e(w) = b = R[1 - (w/N,)]w, where R = 5, NA, = 100: The equilibrium curve for 
whites in a straight-line tolerance distribution. Arrows indicate increases or decreases 
in the number of whites for given neighborhood racial compositions. 
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regions, as described above), e(w) and e(b) are continuous, since every 
value of w/Nw or b/Nb has a unique intersection with F. Because we 
can find the curve e(w) explicitly by solving w/N, = F [w/(w + b)] 
for b, we substitute in the assumed equation for F to find that 
e(w) = b = R[1 - (w/Nw)]w, a parabola depicted in Figure 3 for R = 5, 
which is identical to that displayed by Schelling (1971, p. 171, fig. 19). 
For values of w and b within e(w), more whites will enter, since the 
number of blacks in the neighborhood is less than the maximum that 
that number of whites can accept. Outside the curve, whites will leave; 
on the curve, no change will occur-hence, the arrows in Figure 3. The 
comparable parabola for blacks, with similar arrows drawn, is super- 
imposed on the white curve in Figure 4. Within each region we indicate 
the resultant of the two arrows (as does Schelling 1971, p. 171). The 
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FIGURE 4. e(w) and e(b) for R = 5, Nw = Nb = 100: Equilibrium curves for whites and blacks 
with identical straight-line tolerance distributions. Horizontal arrows indicate direc- 
tion of change in numbers of whites, vertical arrows the direction for blacks, and 
diagonal (resultant) arrows the direction of overall change. Stable equilibria are 
circled, unstable ones are enclosed in triangles. 
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arrows indicate that (80, 80) is a stable equilibrium, as are (0,100) and 
(100,0), and that the equilibria (25.36, 94.64) and (94.64, 25.36) are 
unstable, because any nearby trajectory will move away from them. 

To summarize, we have graphed together the two equilibrium 
equations; the intersections are thus equilibria and the arrows in the 
phase diagram give a quick reading on stability. This method shows 
the dynamics clearly, which may be especially useful if the underlying 
equations are analytically intractable or result from empirical estima- 
tion of thresholds, as we will illustrate later. But compared to a method 
that works directly with the system of equations on which the graphs 
are based, it has two important limitations: (1) it cannot be used to 
indicate the details of the path to equilibrium, and (2) if there is 
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ambiguity about the nature of stability at a particular equilibrium 
point, it cannot resolve it. In Figure 4, all equilibria are unequivocally 
stable or unstable; linearization gives eigenvalues of zero or greater 
than unity. But if the arrows cycled round an equilibrium point, the 
diagram could not tell us whether the dynamics consisted of an inward 
or outward spiral or some oscillation. In such a case, eigenvalue 
analysis would also be ambiguous, showing a value of unity. That is, 
this method displays graphically the same information available alge- 
braically from linearization. When the linearization is insufficiently 
informative, so is the graphical method, and only by detailed analysis 
of the system of equations can the dynamics be clarified. 

6. DECISION REVERSALS 

In the model thus far, individuals make some decision only 
when their own group is some minimum proportion of those who have 
already done so. But later, if their group exceeds some still higher 
proportion, they may change their mind. Individuals who would not 
speak out until some minimum proportion of those expressing opinions 
were in their camp might no longer feel the need to speak once a more 
substantial proportion agreed with them and the situation seemed more 
securely in hand. This seems even more likely when the action in 
question is more costly than just expressing an opinion. In typical 
public-goods situations, for example, actions may require time, effort, 
or resources, and an individual may have a more substantial impact on 
the outcome as one of a few actors than as part of a large majority. For 
example, you may vote for your candidate only if her election is 
uncertain, not if she has no chance to win or if she is a shoo-in. As 
perceptions of your candidate's support change, your intention to vote 
may fluctuate accordingly. 

For residential segregation, decision reversals can be interpreted 
as a preference for integration. Schelling's term tolerance ratio nicely 
captures the sense that there is no positive aspect to participation of the 
other group; they are merely tolerated up to some maximum, after 
which one declines to live in the neighborhood. But sometimes variety 
is the spice of life, and there is, up to a point, a positive preference for 
the presence of the other group. 

We propose a simple formal argument for decision reversals: 
Each individual is characterized not only by a threshold for the 
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minimum proportion making some decision who are members of his 
own group but also by a threshold for the maximum proportion. An 
individual will join in only if the proportion of his own group among 
those who have already done so falls between these lower and upper 
thresholds.8 

A difference-equation model then follows from an argument 
similar to that used when only lower (segregationist) thresholds are 
present. Suppose that 75 percent of a neighborhood is white at time t. 
What proportion of the neighborhood will be white at time t + 1? A 
white who would reside in such a neighborhood would have a lower 
threshold less than or equal to 0.75. The proportion so willing is 
FLW(0.75), where FL. is the cdf of lower thresholds. But some of these 
whites may have upper thresholds below 0.75; i.e., they may be 
unwilling to live in a neighborhood that is as much as 75 percent white. 
The proportion of such whites is FUW(0.75), where FUW is the cdf of 
upper thresholds for whites. Thus, the proportion willing to live there 
at t + 1 are those for whom 75 percent white is neither too few nor too 
many-namely, the difference FLW(O.75) - FU0(.75), which we shall 
call GQ(0.75). Note that G, the difference of two cdf's, is itself no longer 
a cdf. The system can then be described by the coupled difference 
equations9 

n.(t + 1) = N.G.(p.(t )), (5a) 

nb(t? 1) = NbGb( Pb( t )), (5b) 

where pW and Pb again refer to the proportions of whites and blacks in 
the neighborhood. 

Since the forn of this system is exactly that of equations (la) 
and (lb), stability analysis is identical, except that the f" and lb of 
equation (3) are replaced by g. and gb, where g is the first derivative of 

8 Schelling asserts that his bounded neighborhood model can be inter- 
preted, without change, to reflect integrationist preferences. But he also notes that 
it does not accommodate a "lower limit to the acceptable proportion of opposite 
color, i.e., an upper limit to the proportion of like color in the neighborhood" 
(1971, p. 180, or 1978, p. 165). As Taylor points out, however, "[to] accurately 
model a preference for integration... there must be some account taken of the 
lower limit. A preference for integration means precisely that people will try to live 
in neighborhoods that are neither too white nor too black" (1984, p. 151n). 

9 A similar argument is presented for threshold models of collective behav- 
ior in Granovetter and Soong (1983) and is applied to the analysis of consumer 
demand in Granovetter and Soong (1986). 
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the difference function G. Thus, we have asymptotic stability if 

Nwg.[w/(w + b)] [b(W + b)2] + Nbgb[bl(w + b)] wl(w + b)2] 

(6) 

has absolute value less than unity. 
We offer one example of dynamics with preferences for integra- 

tion. With both segregation (lower) and integration (upper) thresholds 
to consider, we have a bivariate density. By definition, one's lower 
threshold must be lower than or equal to one's upper threshold. Thus, 
the density is distributed not over the entire unit square but over the 
upper left triangle, where lower thresholds are on the x axis and upper 
thresholds are on the y axis. Figure 5 displays one simple bivariate 
density: The distribution is uniform over a rectangular section of the 
triangle and zero elsewhere. Then, everyone's lower threshold is less 
than or equal to some parameter a, and everyone's upper threshold is 
greater than or equal to a. This is plausible, though it is not required 
by the assumption of integration preferences. It has the advantage of 
allowing representation of the density by one parameter. We simplify 
further by assigning this distribution to both groups, but with possibly 
different a 's, indexed as au and ab. 

The bivariate density for whites corresponding to Figure 5 must 
be just that height above the rectangle that, multiplied by its area, 
yields the unit volume required for a density. Thus, 

fw(sL, SLI) = 1 [a.,(I - a,J)] within the rectangle and (7) 

= 0 elsewhere. 

Then, the marginal densities for lower thresholds are 

fLwz,(SL) = Ia., where 0 < SL < a ,, and (8) 

= 0 elsewhere, 

and the marginal densities for upper thresholds are 

fUw(su)1 (1-a.), where a? < s?, < 1, and 

= 0 elsewhere. 

Corresponding marginal cdf's for lower thresholds are 

FLW\SL) -SLla, where 0 < SL < a,t,, and (10) 

elsewhere, 
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FIGURE 5. Bivariate density of upper (sU) and lower (sL) thresholds, uniform over shaded 
rectangle and zero elsewhere. 
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and for upper thresholds are 

Fu(su) = (su-a.)/(l-a.), where a W < St/< Iand (11) 
-0 elsewhere. 

The difference, G., is then Fv - Fu and it is given by 

GW( s) = s1a., where 0 < s < 
at >and (12) 

= (I1-s)/(1 -a.), where a. < s < 1. 

All these equations, with different subscripts, apply to blacks. 
From (5a) and (5b) we see that for the preferences in Figure 5, 

system equations for whites are 

n.(t + 1) = (N.a.)p,(t), where 0 <pj(t) < a., and 

= [Nw/(l-aW)I pb(t), where a , <?p(t)?1 < (3 

and for blacks are 

nb(t + 1) = (Nb/ab)pb(t), where 0 <pb(t) < ab, and 

= [Nb/(1 -ab)]pW(t), where ab<Pb(t) < 1. 

That is, system equations are defined in piecewise fashion. For each 
group, the first equation applies if the group's current proportion of the 
neighborhood is less than or equal to its parameter a. Otherwise, the 
second equation applies. 
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Because two equations are possible for each group, there are 
four sets of possibilities, or parameter regions, depending on current 
neighborhood composition. 

Conditions for region 1 are pj(t) < aw, and Pb(t) < ab. Both 
groups are at or below their parameter a, so behavior in neither group 
is affected by integrationist preferences.'0 System equations are 

n,,(t + 1) = (1V.1a.)p,(t) (14) 
nb(t + 1) = (Nblab)Pb(t) 

In equilibrium these reduce to 

w = (NW/a.)[w/(w + b)], (15) 
b= (Nb/ab)[bl(w + b)], 

whence we have w + b = (Nm/aw) = (Nblab). Equilibria thus exist in 
this region if this unlikely parameter condition is met. Then, any point 
on the line defined by w + b that lies in region 1 is an equilibrium. The 
stability of these equilibria is assessed by using equations (6), (12), and 
(15) to compute the relevant eigenvalue, which then turns out to be 
exactly unity, which is uninformative on stability. 

But inspection of the equations (14) shows that when equilibria 
exist, dynamics consist merely of preserving the initial proportions of 
whites to blacks but scaling the initial numbers up or down so they add 
to the constant amount (N.1/a,) = (Nb/ab). Thus, if N- = 200, a, = 
0.8, Nb= O00, and ab= 0.4, then this constant amount is 250, and an 
initial condition of 100 whites and 50 blacks is scaled up to an 
equilibrium of 166.67 whites and 83.33 blacks, still in the proportion of 
2 to 1. A perturbation of this equilibrium will return the system to the 
same equilibrium only if it preserves this proportion; otherwise, the 
system will move to a different equilibrium on the line w + b = 250, 
determined by the new proportions. 

Conditions for region 2 are a. < pjt) < 1 and 0 < Pb(t) < ab. In 
this region, some whites but no blacks are affected by preferences for 
integration. We then have 

n(t + 1)= [NW/(1 -a,)]pb(t), (16) 

nb(t + 1) = (Nb/ab)Pb(t). 

10 In region 1, we must have (a, + ab) ? 1, since if the sum were less than 1 
and if each current proportion were less than its respective a, the sum of current 
proportions would not equal 1, as it must. 
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In equilibrium, w = [NW/(1 - a,)][b/(w + b)] and b = (Nb/ab)[b/(w 

+ b)]. Solving for w and b in terms only of the system parameters, we 
get 

w = [Nw/(l-aw)]/{l + [Nwab/((1- aW)Nb)]), (17) 

b = (Nb/ab)/{l + [Nwab/((1- aw)Nb)] ). 

We may gauge stability of equilibrium by substitution into (6), using 
(12) and (17), yielding an eigenvalue of zero; thus, the equilibrium of 
equations (17) is asymptotically stable. 

Conditions for region 3 are 0 pw(t) < a,, and ab < Pb(t) < 1. 
This region is exactly symmetric to region 2, interchanging the two 
groups. System equations and equilibria are thus identical, changing b 
for w, and the variable eigenvalue is again zero, indicating stable 
equilibria. 

Conditions for region 4 are a < pw( t ) < 1 and ab < Pb( t ) < 1." 
Here, some whites and some blacks will feel that there are too many of 
their own color in the neighborhood. System equations are 

n (t + 1) = [Nw/(l- aW)]Pb(t), (18) 

nb(t + 1) = [Nb/(l -ab)] PW(t) 

Some algebra shows that the equilibria are 

W = [ NW/(l -aw] 1/2/{ [-aW)NW,] /2 + [(1 -ab)lNb] 1/2} 5 19 

b = [ Nbl( 1 ab )] 1/2{ [( 1 -aj IN,, ] 
2 

+ [(I - -ab )/Nbl ] } 

From (6), (12), and (19) we find that the second eigenvalue here is - 1, 
indeterminate for stability. But if we trace out equations (18) on a 
calculator, we see that for any set of parameters, every set of initial 
conditions n ,(t) and nb(t) leads immediately to an oscillation of period 
two. The equilibrium point given by the parameters is within the range 
of the oscillation but is itself never reached. Further, each set of initial 
conditions leads to its own particular oscillation, unique except that 
every pair in the same ratio leads to the same oscillation. Finally, the 
initial white/black ratio reappears every second period. These char- 
acteristics could be derived analytically by computing general expres- 

11 In region 4, we must have (a, + ab) < 1, since both groups exceed 
their a parameter. This could not be the case if the sum of the two parameters 
exceeded 1. 
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sions for n Jt + 2) and nb(t + 2), but it is more illuminating to give a 
numerical example. 

Suppose that a neighborhood has 200 whites and 100 blacks and 
that a.= 0.3, ab= 0.1, N1, = 300, and Nb= 300. Each group contains 
some individuals who believe that there are too many of their own 
group present. From (19) we see that an equilibrium exists at w = 

200.84, b = 177.12. But from (18) we can compute that at time (t + 1), 
the numbers of whites and blacks are (142.86,222.22); at t + 2 we have 
(260.87,130.43), which reproduces the original 2-to-1 ratio; at t + 3 we 
return to (142.86,222.22), and so on. The equilibria in region 4 do 
not attract nearby trajectories. If we were at the equilibrium 
(200.84,177.12) and were slightly pushed away to, for example, 
(201,177), the system would not return to the equilibrium but would 
not move very far. Rather, it would settle into the cycle (200.68,177.25), 
(201,177). Similarly, any cycle in progress, if slightly perturbed, would 
settle into a close-by cycle. Thus, the initial conditions under which the 
system first enters region 4 determine the amplitude of oscillation. 

While the system is entirely deterministic, it is, in two of the four 
regions, enormously sensitive to initial conditions and may fluctuate in 
apparently odd ways even without perturbations. Such fluctuations are 
characteristic of systems of deterministic nonlinear difference equations, 
and May (1976) has shown that under certain conditions, they may be 
essentially indistinguishable from random noise. In the general case, 
numerical methods are required to determine outcomes, but some 
analytical approximations to observed distributions are usually possi- 
ble, and these can be related to the techniques used here, to give a 
reasonable picture of system dynamics. 

7. THE GRAPHICAL METHOD WITH 
DECISION REVERSALS 

The graphical method described earlier can also be applied 
when decisions are reversible. In the segregation example, we again 
ask, Given a certain number of blacks in a neighborhood, for what 
number of whites in the neighborhood will that number of blacks not 
change? When integration preferences are present, there may be more 
than one such number of whites, even if there are no horizontal 
segments in the cdf, because there may now be not only too many 
whites for the fixed number of blacks but also too few. 
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Suppose we ask, For what numbers of whites will a neighbor- 
hood that currently has 30 of a population of 60 blacks continue to 
have just 30 blacks? The basic difference equation (5b) may be written 

nb(t + l)/Nb= Gb(Pb(t)) where Pb is the proportion of the neighbor- 
hood that is black; i.e., b(t)/(w(t) + b(t)). Since the 30 blacks are just 
50 percent of the black population, if the neighborhood is to continue 
to have 30 blacks at t + 1, the 30 must be a proportion of the 
neighborhood equal to Pb such that Pb satisfies the relation 0.50 = 

FLb( b)- FUb(Pb) = Gb(Pb). This is the equilibrium condition for the 
equation. But since G need not be monotonic, more than one value of 

Pb may satisfy this relation; i.e., there may be more than one propor- 
tion of whites in the neighborhood such that 50 percent of the black 
population will continue to live in the neighborhood. Any Pb for which 
the difference in height between lower and upper threshold cdf's is 
exactly 50 percent will suffice. 

Suppose our cdf's were such that Gb(0.60) = Gb(0.20) = 0.50. 
Then, 30 blacks could coexist with exactly 20 whites and with exactly 
120 whites. (Note that the 30 blacks in the first and second cases might 
not be the same.) Since the cdf's whose difference is being taken are 
monotonically increasing, numbers of whites below 20 would be too 
few, and some blacks would depart. At 20 whites, 30 blacks would be 
present next period. Between 20 and 120 whites would be neither too 
few nor too many, so the 30 blacks would remain and more would 
enter. At 120 whites, exactly 30 blacks would remain in any subsequent 
period, but more than 120 whites would be too many and the number 
of blacks would again fall below 30. If more than two arguments of G 
yielded the result of 50 percent, these alternations would occur once 
again. 

Figures 6a and 6b show the cdf's and the difference function G 
discussed above. Our procedure for constructing the curve e(b) is 
analogous to that outlined earlier, when preferences were only for 
segregation. We convert the number of individuals in the group in 
question-here, 30 blacks-to a proportion of the group's population 
-here, 50 percent-and locate this proportion on the vertical axis of 
the G curve. Then, we move across the curve horizontally, finding all 
intersections with G, and take as e(b) the arguments of G correspond- 
ing to those intersections, as shown in Figure 3c. Here e( b) is a 
vector-valued function of b. 

In equations, e(b) is found by solving b/Nb = Gb(b/(w + b)), 
the equilibrium equation for blacks, for w. We find e(w) in the same 
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FIGURE 6. A and B, upper and lower threshold cdf's for blacks (FUb and FLO) such that 
GA(0.20) = Gb(0.60) = 0.50. C, e(b), the equilibrium curve for blacks implied by the 
curves in A and B. Arrows indicate direction of change in numbers of blacks. 
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way. The arrows in Figure 6c indicate the changes to be expected in 
numbers of blacks at each point in the next period. If we superimpose 
the curves e(w) and e(b), system equilibria will be at the intersections; 
we can then draw resultants of black and white arrows to produce a 
phase diagram that gives some insight into the stability of equilibria. 
The observations made earlier on the values and limitations of such 
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diagrams apply here; they would not, for example, elucidate the 
dynamics in regions 1 and 4 of the rectangular density discussed above. 

8. GENERALIZATION BEYOND TWO GROUPS 

Binary decisions may involve more than two groups. For exam- 
ple, there may be more than two candidates to support in an election. 
Likewise, residential segregation may involve three or more ethnic 
groups. We analyze exactly three groups and obtain the essentials for 
generalization to any larger number. Continuing the segregation nota- 
tion, we retain the subscripts w and o for whites and blacks and add a 
subscript h to represent Hispanics. We include integration preferences, 
since their absence is then merely a special case in which no individuals 
have upper thresholds, i.e., FU = 0 so that Gw = FLW, etc. The natural 
generalization of equations (5a) and (5b) is 

n.(t + 1) = N,,Gj(pjt)) (20a) 

nb(t + 1) = NbGb(pb(t)), (20b) 

nh(t+ 1) =NhGh( Ph( t )) , (20c) 

where pi(t) = ni(t)/[nj(t) + nbt0) + nh(t)], the proportion of the 
neighborhood made up of group i at time t. Generalization to k groups 
is then straightforward. Analysis of the matrix of first-order partial 
derivatives shows that at least one eigenvalue is zero. In general, for k 
groups, stability will depend on k - 1 eigenvalues, and stability re- 
quires that the absolute value of all k - 1 must be less than unity. 
Stability analysis is thus much more complex for three or more groups 
than for two. 

Equations (20) assume that each group is sensitive only to the 
proportion of its own members in the population, that it makes no 
distinctions among other groups and simply lumps them together in the 
denominator. More complex intergroup preferences could be incorpo- 
rated by assuming a matrix of weights to be inserted in the denomina- 
tor of the right side of the equations. Each group has one row in the 
matrix indicating how it weights each other group. The main diagonal 
can be standardized to unity. Thus, for example, the row for blacks 
(bw, bb, bh) might be (3,1,1/2). This implies that for blacks, whites in 
the neighborhood loom larger than life, that seeing one white is three 
times more salient than seeing one black. For segregation thresholds 
(lower thresholds), this means that the tolerance of blacks for whites is 
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lower than it would be if the weights were equal. The weight of 1/2 for 
Hispanics, less than unity, indicates that blacks believe Hispanics are 
even easier to live with than other blacks and thus, in this restricted 
sense, are six times more desirable than whites. For segregation 
thresholds, this means that when Hispanics live in the neighborhood, 
blacks are comfortable with fewer other blacks than they would be if 
all weights were equal. For upper or integration thresholds, the effect is 
opposite: Because whites are more salient than blacks, it takes more 
blacks in the neighborhood to trigger blacks' upper threshold than it 
would if all weights were equal; therefore, blacks stay longer. Corre- 
spondingly, since Hispanics are less salient than blacks, their presence 
causes blacks to reach their upper threshold sooner.12 

9. CAPACITY CONSTRAINTS 

The problem with the segregation interpretation of our models 
is that there is, at least in the short run, a fixed number of housing 
units, which may be less than the number of people who want to live in 
the neighborhood. In neoclassical economic equilibrium, housing prices 
would adjust to equate supply with demand; but housing markets are 
often out of equilibrium, so it is useful to indicate how our model is 
affected. 

Consider the neighborhood in Figure 7: Demand comes from 
100 whites and 100 blacks, and stable equilibria are (80,80), (100,0), 
and (0, 100). Suppose there are just 50 homes. This capacity constraint 
can be indicated by drawing in the line b = 50 - w, as indicated (see 
Taylor [1984, p. 146] for a similar diagram). Suppose thresholds and 
dynamics are as given by equations (4) and that we begin with 10 

12 Weights could also be assigned in the analysis of two groups, but these 
would then simply alter the unweighted thresholds. For example, if whites weighted 
blacks three times more than whites, a white who had an unweighted threshold of 
0.5 would live in the neighborhood if nl,,/(3nb + n ,) > 0.5, i.e., if n,,/Ib > 3, 
which is the same as a threshold of 0.75. More generally, if weight w is assigned to 
the other group and unity is assigned to one's own, an individual with a stated 
threshold of t will have a normalized or adjusted threshold of wt/L[ I(w - 1) + 1]. 
Thus, for two groups, the weights may simply be determinants of thresholds that 
have already been normalized for weighting considerations. However, this method 
fails when there are more than two groups, because no unique normalized 
threshold can be obtained from an initial stated threshold and a set of weights. 
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FIGURE 7. The curves of Figure 4, with added capacity constraints of maximum neighborhood 
size = 50, indicated by the line b 50 - ). 

120 - 

b 

96 / \~~~~~11 

72- 

48 

24 

0 

0 24 48 72 96 120 
w 

whites and 20 blacks in the neighborhood. This places us in region 4, SO 

equations (4g) and (4h) indicate what will occur. Recalling that R = 5, 
we see from these equations that at time t + 1, 60 whites and 90 blacks 
will want to live in the neighborhood. Since this exceeds the stated 
capacity of 50, some rationing rule is required. One, but not the only, 
plausible rule is to fill the houses with whites and blacks according to 
their proportions among the candidates. Then, we would have 20 
whites and 30 blacks in the next period. What will happen next? 
Applying equations (4g) and (4h) again shows that at t + 1, 70 whites 
and 86.7 blacks will want to live in the neighborhood. If we again take 
50 whites and blacks according to their proportions among those who 
want to live in the neighborhood, we have 22.33 whites and 27.67 
blacks. Continuing this process leads us closer and closer to a limiting 
value of 25 whites and 25 blacks, because the equilibrium, given a 
capacity constraint and the rationing rule adopted here, is simply the 
unconstrained equilibrium (80,80) scaled down linearly to meet the 
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constraint. The stability characteristics of unconstrained equilibria are 
identical to those of the constrained equilibria.'3 

But there is a troublesome aspect to these dynamics. With 20 
whites and 30 blacks in the neighborhood, we applied the system 
equations and the rationing rule to find that 70 whites and 86.7 blacks 
would be candidates for the neighborhood in the next period, and thus 

22.33 whites and 27.66 blacks would live there. But the 70 and 86.7 
include the 20 whites and 30 blacks already in the neighborhood; 
therefore, our procedure requires some resident blacks to leave even 
though they are not dissatisfied. This complete reshuffling each time 
period makes sense only when transaction costs of entering or leaving a 
state are negligible, which is implausible for real neighborhoods. An 
additional stipulation, which modifies the dynamics of equations (4), 
seems necessary: Residents in a neighborhood will not vacate if existing 
racial proportions are such that they would like to live there next 
period. In the model without capacity constraints, this question cannot 
arise, since anyone who wants to live in the neighborhood can. 

Then, 20 whites and 30 blacks represents an equilibrium, since 
no one is motivated to leave. In fact, every point on the line b = 50 - w 
that is within the two parabolas is an equilibrium. These equilibria 
have only limited stability, however. Any perturbation that leaves 
whites and blacks in the ratio of 2/3 will restore the 20/30 outcome. 
But any other change will result in a new equilibrium, along the line. 
In particular, if a perturbation results in a ratio of x whites to y 
blacks, the new equilibrium point will be that which scales x and y up 
to the line, i.e., to that point (w, b) at which w/b = x/y and w + b = 50. 
As the arrows in Figure 7 suggest, points on the line b = 50 - w that 

are not within both curves lead to either w = 50 or b = 50, which are 

stable against perturbations that remain outside one of the curves. 
Thus, even with capacity constraints, the basic model works 

when demand for places does not exceed supply-market equilibrium 
being included as the special case of equality-or when transaction 
costs of entering or leaving are negligible. When neither condition is 

met, system outcomes will be affected in important ways that must be 

taken into account. In the public opinion interpretation, capacity 
constraints are likely to be irrelevant, since there is no obvious upper 

' 3 These assertions seem intuitively reasonable to us, so we omit the proofs. 
However, they are available on request. 



THRESHOLD MODELS OF DIVERSITY 99 

limit to the number of individuals who can express their views. Club 
membership usually involves a capacity constraint, but the transaction 
costs of entering and leaving may be minimal. Sensing the volatility 
this implies, many clubs thus impose nonrefundable initiation fees. 

10. EMPIRICAL APPLICATIONS 

Empirical applications require measurement of the postulated 
thresholds. We see two ways to proceed. One way is to adapt the 
economists' concept of revealed preference, attributing thresholds to 
individuals by observing the distribution of others' decisions before they 
make their own. This has the advantage of resting on observed facts, 
but for any given individual, observation is uninformative unless he 
actually does something. A black who remains in his neighborhood as 
it changes from 100 percent black to 60 percent is known to have a 
threshold of 60 percent or less, but this right-censored observation is 
crude. When we take upper thresholds (integration preferences) into 
account, it becomes clear that good measurement requires observation 
over a rather wide range of neighborhood conditions. We must also 
assume that behavior exactly reflects thresholds and that there is no 
significant lag between the passing of one's threshold and behavior. If 
there are lags, and worse, if these vary by individual, then the 
composition of the neighborhood or of expressed opinion just before 
movement or the expression of one's views may not accurately reflect 
the actor's threshold. 

The other way to measure thresholds is to ask respondents 
directly. This method is suspect to the extent that there is no indepen- 
dent check on the validity of respondent reports. However, because it is 
direct, it does not suffer from the censoring and lag problems of 
revealed preference measures, and it appears empirically that respon- 
dents have no difficulty answering questions of this kind. Noelle- 
Neumann has shown that peoples' willingness to express their opinions 
depends on whether they think they are in the majority. She has also 
explored other determinants of this willingness (1984, chap. 2). She 
asks respondents, for example, whether, faced with a five-hour train 
ride with a stranger who has one of two definite views on some subject, 
they think it would be worth their while to discuss the subject with that 
person (1984, p. 18). We could extend this question and ask respon- 
dents how interested they would be in expressing their opinion in some 
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public setting in which the group was split in various proportions on 
some question. 

For the interpretation of residential segregation, Taylor (1984) 
reports successful use of a question like this in a telephone survey of 
300 black and 300 white residents of Omaha in 1978 on the impor- 
tance of racial preference in housing choice. Neighborhoods were 
described as having certain numbers of blacks and whites, and respon- 
dents were asked whether they would try to move out of their neigh- 
borhood if its racial proportions changed to those given in the question 
(Taylor 1984, p. 244, n. 1). Each respondent was asked about seven 
possible mixtures: all white, 1 black/9 white, 3 black/7 white, 5 
black/5 white, 7 black/3 white, 9 black/i white, and all black. 
Though Taylor drops that part of the data reflecting preferences for 
integration (1984, p. 151), the question, since it captures for each 
respondent the acceptable range of neighborhood compositions, does 
index both segregation and integration preferences and thus permits us 
to estimate both lower and upper threshold distributions. For example, 
a white respondent who accepts black/white ratios of 9/1, 7/3, 5/5, 
and 3/7 but who rejects ratios of 10/0 and 1/9 has a lower threshold 
of 10 percent and an upper threshold of 90 percent. He is willing to 
live in a neighborhood that is between 10 percent and 90 percent 
white. In Table 1 we give Taylor's empirical results, and in Figures 8a 
and 8b we estimate the corresponding functions GJ(s) and Gb(s) by 
connecting the measured points with straight lines. (Other assumptions 

TABLE 1 
Tolerance Schedules Estimated from Omaha Survey Data 

Percentage Who Would 
Tolerate Mix 

Racial Mix White Black 

All white 100 95 
1 black, 9 white 97 98 
3 black, 7 white 87 100 
5 black, 5 white 69 100 
7 black, 3 white 54 98 
9 black, 1 white 36 97 
All black 28 95 

Source: Taylor 1984, p. 150. 
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FIGURE 8. A, Gm(s): The white difference curve interpolated from the data points of Table 1. 
B, Gb(s): The black difference curve interpolated from the data points of Table l. C, 
e(w) and e(b) for N. = Nb = 100: Equilibrium curves for whites and blacks implied 
by the curves in A and B. 
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for interpolating intermediate points are possible, but this seemed the 
most straightforward.) The function Gj,(s) is identical to a cdf, FJ,(s), 
of lower (segregation) thresholds, since no whites in this survey indi- 
cated any preference for integration. 

To construct the equilibrium curves e(w) and e(b), we apply 
the graphical method described above. For a given number of blacks, 
for example, we set b = NbG( Pb) and solve to find w, the point(s) on 
the curve e(b). We need only specify the numbers of whites and blacks 
(AN and Nb) interested in living in a given neighborhood. Taylor 
draws these curves for 100 of each race (1984, p. 153) but excludes 
preferences for integration, since these were not treated by Schelling. 
Our Figure 8c gives e(b) and e(w), including integration preferences. 
A stable equilibrium point occurs at about 99 blacks and 60 whites, 
which is 62.3 percent black and 37.7 percent white. Without the 
integration preferences, e(b) would be a horizontal line at b = 100, 
indicating that for any number of whites from 0 to 100, all 100 blacks 
in the neighborhood at time t would remain at t + 1. The curves 
would then cross at 100 blacks and about 59 whites. In this case, 
integration preferences do not make much difference, since no whites 
have them and only about 5 percent of blacks do. Notice the direction 
of the small difference: One black leaves, finding the neighborhood 
"too black," and he is replaced by one white. 

Different numerical assumptions would yield very different re- 
sults. Noting that Omaha was about 12 percent black at the time of the 
survey, suppose we had 880 whites and 120 blacks interested in some 
neighborhood. The intersection of e(w) and e(b) occurs at about 118 
blacks and 844 whites; whites are then 87.7 percent of the neighbor- 
hood, almost exactly the same as their proportion in the population. 

1 1. CONCLUSIONS 

Our models fit cases in which one's behavior depends on the 
previous behavior of others and in which the group composition of 
those making a certain decision is the crucial element of that depen- 
dence. One application is residential segregation. We showed that 
Thomas Schelling's models can be expressed in terms of our system of 
two coupled difference equations, perinitting an exact mathematical 
account of his results and such important generalizations as the incor- 
poration of preferences for integration and the extension to more than 
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two groups. The model applies also to a class of public-opinion 
problems, usually discussed under the rubric of pluralistic ignorance. 
Another natural linkage is to free-rider problems and the provision of 
public goods. The techniques of Noelle-Neumann (1984) and Taylor 
(1984, 1986) suggest that thresholds can be measured with relatively 
straightforward techniques of survey analysis. 

These models have three distinct advantages over most current 
models: (1) their treatment of dynamics is explicit and central (i.e., 
they do not deal in comparative statics), (2) they make no assumptions 
of linear relations among variables, and (3) they are driven not by 
correlations but by well-defined causal mechanisms. We see models of 
this kind as part of a broader movement in sociology toward explicit, 
concrete, dynamic analysis and away from the general linear model, 
which, assuming that the size of causes must determine the size of 
consequences, prepares us poorly for the many surprises that social life 
has in store. 
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