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Experimental Design  

As described in the text, the study consisted of two conditions – a homophilous population 

condition and an unstructured population condition – between which subjects were randomly assigned.  

The schema for this design is shown in Figure S1.  After all the subjects were assigned to conditions, each 

individual was randomly assigned to a single node in one network.  In the unstructured population 

condition, subjects remained in their randomly assigned positions for the duration of the study.  In the 

homophilous population condition, once all subjects had been assigned to networks, their positions within 

their networks were subsequently rearranged to optimize similarity among neighbors within the social 

network (as discussed below).  The architecture of every network in the study was identical:  every 

network had the same degree, Z (each node had the same number of neighbors as every other node), the 

same topology (hexagonal lattice), and the same overall size (each network had the same total number of 

nodes, N).  The only difference between conditions was the distribution of individual characteristics 

within the networks.  Consequently, any difference in the dynamics of diffusion between conditions was 

due to the effects of homophily on the spread of behavior.  In each condition, five independent 

realizations of the experiment were run, resulting in five “pairs” of networks across conditions. Each pair 

constitutes a single trial of the study.  Over all five trials, 50% of subjects were enrolled in the 

homophilous population condition, and 50% were enrolled in the unstructured population condition.  
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We initiated the study using healthy seed nodes in each network.  In all 10 networks, a single 

node was reserved for starting the diffusion dynamics:  Female, 28 years old, BMI: 23.7, Above Average 

Fitness, Omnivorous Food preferences, Above Average Exercise Minutes, and Favorite Exercise:  

Running.  In both conditions of Trials 1 and 3, a single neighbor of the seed node was activated as an 

additional seed.  Further, additional seeding in Trial 1 also tested the robustness of our design for 

alternative seeding procedures using less healthy seed nodes (discussed below).  Diffusion dynamics were 

initiated by sending a signal from each of the seed nodes to their neighbors (i.e., “health buddies”) in the 

social network. This signal provided each of their neighbors with the opportunity to adopt a new health 

technology called a “diet diary.”  If any of these subjects adopted the diet diary, their network neighbors 

would, in turn, also receive notifications about the diet diary.  All signals were in the form of a message 

on the subject’s “health dashboard” – an on-line health management tool that allowed subjects to view the 

recorded health behavior of their health buddies and compare it with their own recorded behavior.  Every 

instance of a subject’s adoption of the diet diary was automatically reported on his/her neighbors’ health 

dashboards (see below).   
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Figure S1.  Schema of the experimental design.  Each subject was randomly assigned to a population 

condition, and then randomly assigned to a single node in a network.  Once the networks were populated, 

the nodes in the homophilous population condition were rearranged to maximize homophily. 

 

Network Structure and Homophily Algorithm 

All ten networks in the study used identical architectures.  Each network was a hexagonal lattice 

structure (Fig. S2) with the same number of nodes (N=72), degree (Z=6), and clustering coefficient 

(CC=0.4, using the closed triples method, 35).  Each node in each network had six neighbors. The lattices 

were located on tori (i.e. toroidal surfaces), so there were no boundary effects in the networks. 

 

Figure S2.  Neighborhood structure on a Hexagonal Lattice network.  

The homophily algorithm used to rearranged nodes in the homophilous networks was based on 

Young’s (36) model of assortative interaction.  Three health related characteristics were chosen as the 

basis of homophily:  Gender (11,18,19), Age (5,11), and BMI (1,18,19,21).  We used all three 

characteristics, instead of a single one, as the basis of homophily because multivariate homophily 

(4,5,11,32) provides a more robust approach to creating homophilous relationships across a large social 

network than choosing any one characteristic as the basis for all homophilous ties.  Each individual was 
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assigned a score based on her current position in the network, defined in terms of her level of similarity 

on each of these characteristics with each of his/her neighbors.  For continuous values, such as Age and 

BMI, the neighborhood average score was used.  The overall neighborhood “homophily score” for the 

individuals’ location in the network was thus based on 1) the number of neighbors in the network with the 

individual’s same gender, 2) the difference between the individual’s Age and the average Age of the 

neighborhood, and 3) the difference between the individual’s BMI and the average BMI of the 

neighborhood.   

We then evaluated his/her current score versus the possible scores he/she would have in every 

other position in the network (assuming every other subject remained in their current positions).  

Identifying the position with the highest score (i.e., the position in which an individual would have i) the 

greatest number of same gender neighbors, ii) the least difference between his/her Age and the average 

Age of the neighborhood, and iii) the least difference between his/her BMI and the average BMI of the 

neighborhood), we would then attempt to move the subject from the current location in the network (i.e., 

source node) to the new location (i.e., target node).  To move a subject to a target node, we required that 

the current occupant of the target node move to the current subject’s source node location – that is, we 

would switch the two subjects’ positions in the network.  The attempted move was only successful if the 

subject in the target location would not have his/her homophily score decreased by virtue of the exchange 

of positions (i.e., both subjects would have the same or better homophily scores in their new locations).  

This ensured that overall homophily in the network was not reduced.  If both nodes “agreed” to the move, 

they would change positions.  If they did not agree (i.e., if the node in the target position would have 

his/her homophily score lowered by virtue of the exchange), the source node would then select the next-

most desirable location in the network for increasing his/her homophily score, and the move would be 

attempted again.   
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We repeatedly iterated this procedure over all nodes in the network until the process reached 

convergence (i.e., until no node’s homophily scores could be improved without reducing other nodes’ 

scores).  Using Young’s “stochastic stability” criterion (36), we tested for local minima to ensure that the 

final convergence of our procedure was the globally optimal arrangement of individuals in the network to 

maximize overall homophily on the selected characteristics.  We then compared the neighborhood 

structures that resulted from this procedure.  We used the Mann-Whitney U test to evaluate the statistical 

differences in the neighborhood compositions across conditions.  Using each independent network 

realization as a single observation, the Mann-Whitney U provides a non-parametric test of the likelihood 

that the observations drawn from one population (i.e., the homophilous or unstructured condition) are 

significantly different from those drawn from the other population.  The Mann Whitney U test showed 

that in homophilous networks, subjects were significantly more likely to have neighbors of the same age 

and same gender than in the unstructured networks (P<0.01), and in the homophilous networks obese 

individuals (BMI  30) were significantly more likely to have obese neighbors than they were in the 

unstructured networks (P<0.01).   

 

Subject Recruitment and Initiation of the Study 

The study ran for 7 weeks, February 8, 2010 through March 30, 2010 as part of the “GetFit” on-

line fitness program.  Our experimental environment ran concomitantly with the GetFit program for its 

full duration. Participants were recruited using an international “web” recruitment campaign run by 

GetFit, primarily targeted at university faculty, students, staff, and affiliates.  Table S1 shows the 

composition of the recruited subject population.     

Subjects enrolled in the GetFit program through an on-line registration procedure.  All individuals 

who completed this procedure were given the opportunity to join “The Health Buddies Program” as part 

of their GetFit registration.  The GetFit registration period lasted for two weeks (January 7, 2010 through 
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January 21, 2010).  As subjects signed up for the study, they were randomized to conditions.  Of the 2088 

individuals who completed the enrollment for GetFit, 852 signed up for The Health Buddies Program, and 

710 were enrolled in this study – 355 in the homophilous population condition, and 355 in the 

unstructured population condition.  Thus, at the end of the two week registration period, each condition 

contained a “pool” of 355 participants.  
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Table S1. Distribution of characteristics in the subject population 

 Once the registration period ended, there was a “lag” before the beginning of the GetFit program.  

During this lag time, subjects were randomly assigned to networks within their respective experimental 

conditions, and the populations in the homophilous networks were re-arranged according to the 

homophily algorithm described above.  The experimental environment was made available to all subjects 

simultaneously at the beginning of the GetFit program.  For the duration of the fitness program, 

participants who logged in to GetFit were able to seamlessly interact with the experimental environment 

(i.e., the “health dashboard”) as part of their GetFit experience.  We initiated the seeding of the behavior 

on February 8, 2010 – i.e., week 1 of the study. 

 

Subject Experience During Experiment  

The design of the experiment was unknown to the subjects.  Upon arriving to the study, subjects 

were informed that they would be matched with “health buddies” with whom they could compare real-

time information about exercise activities and health behaviors.  Subjects agreed to a consent form, 

completed a brief demographic questionnaire, and chose screen-names and avatars to represent 

themselves in the on-line community.  All subjects in the study were members of a voluntary, on-line 

fitness program (“Get Fit”), which required that they log in to an Internet website and record their minutes 

of exercise, intensity of exercise, and exercise activities.  GetFit participants were required to log in at 

least once a week to enter their exercise information, and they were permitted to log in as frequently as 

they desired.   

Every time a subject logged in to GetFit, her health dashboard would display the full, up to date 

record of her exercise activities and adopted health behaviors, along with those of each of her health 

buddies.  Figure S4 shows a typical health dashboard.  Because all subjects in the study had identical 
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network degree (i.e., six), every health dashboard showed the same number of health buddies.  Health 

buddy avatars were listed in descending order according to the number of completed exercise minutes in 

the current week.  This ranking was performed in real-time every time a subject accessed her health 

dashboard.  This prevented any one health buddy from always being located at the top of the buddy list. 
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Figure S4. Screenshot of a health dashboard from the Health Buddy Homepage 

For the duration of the study, subjects could log in to GetFit at any time to view their health 

dashboards.  Clicking on one of the health buddies would highlight that individual and display her full 

profile information (as shown in Figure S4).  The dashboard would also display the active health buddy’s 

exercise information side-by-side with the subject’s information for real-time comparison.  Subjects could 

select any week from the beginning of the study through the current week, to view the record of their own 

activities and those of their health buddies. 

 Subjects were notified about their health buddies’ activities through real-time updates on their 

health dashboards.  If one of their neighbors adopted a behavior, an icon with a sign-up link was 

displayed next to that buddy’s avatar in the dashboard.  Figure S5 shows a health dashboard in which one 

of the buddies has adopted the diet diary.   
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Figure S5.  Screenshot of health dashboard with a neighbor who adopted the diet diary. 

If a subject clicked on either the icon or the “Start Diet Diary” link, he/she was given a registration page 

to sign up for the diet diary.  Figure S6 shows the diet diary registration page.   

 

Figure S6.  Registration page for the diet diary 

If a subject completed the registration, he/she was provided access to his/her personalized diet diary via a 

tab at the top of the health dashboard.  This would allow the subject to switch seamlessly between the diet 

diary and the health buddies home page.   The diet diary provided a diet management tool for recording 

daily food intake.  The installed Calorie King database provided a comprehensive list of foods, and 

reported the caloric and nutritional value of each entered item.  Subjects could compare the caloric and 
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nutritional content of their foods with those of their health buddies who had also signed up for the diet 

diary.  Figure S7 shows a diet diary page. 

 

Figure S7. Screenshot of a diet diary  

Once subjects signed up for the diet diary, their health dashboards displayed real-time updates on the diet 

diary activities of their health buddies who had also signed up for the diet diary.  Subjects could return to 

the homepage by clicking on the tab at the top of the screen.  Figure S8 shows a health buddy homepage 

for a diet diary user.  
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Figure S8. Screenshot of a health dashboard after the subject adopted the diet diary  

 Subjects could navigate between the health dashboard homepage and the diet diary using the tabs 

at the top of the screen.  Clicking on a health buddy’s diet diary icon would open the diet diary page with 

that buddy’s information highlighted.  Once subjects registered for the diet diary, it was available for their 

use for the duration of the study.  There was no way to find out about, or get access to, the diet diary 

except through a health buddy notification on a subject’s health dashboard. 

 

Data Analysis 

We measured the success of diffusion in terms of the number of non-seed individuals in each 

network who adopted the diet diary.  Table S2 shows the cumulative pattern of diffusion over 7 weeks for 

all networks.  We used the Mann-Whitney U test to evaluate the statistical significance of the difference 

in diffusion across conditions.  The Mann-Whitney U is a non-parametric test of the likelihood that the 

observations drawn from one population will be greater than those drawn from another population.  In 

essence, it tests whether there is a statistical difference in the medians of the two populations.  Thus, it is 

very similar to the two-sample T-test, however it provides a more conservative estimate of significance 

since it does not rely on the assumption of normality in the distribution.   
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Table S2.  Cumulative number of adopters for all networks 

 To measure the adoption patterns among obese (BMI  30) and non-obese (BMI < 30) 

individuals, we compared the adoption levels among obese and non-obese individuals in each trial for 

both conditions.  We also compared the total level of exposure to the behavior among obese and non-

obese individuals, and the total percent of exposed obese and non-obese individuals who ultimately 
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adopted the behavior.  Table S3 shows exposure and adoption levels among obese and non-obese adopters 

in all networks.  We used the Mann-Whitney U test to evaluate the significance of the differences in the 

exposure and adoption levels between obese and non-obese individuals both within and across conditions.  

The logic for using this test to compare obese and non-obese adopters is the same as it was for evaluating 

overall diffusion:  across conditions, the goal is to determine the likelihood that one condition will 

consistently produce observations that are greater than those for the other condition; within conditions, 

the goal is to determine the likelihood that one sub-population (i.e., obese or non-obese) will consistently 

produce observations that are greater than the other sub-population.  

 

Table S3.  Total fraction of exposures and adoptions for obese and non-obese individuals for all networks 

 

Additional Analyses 

An additional factor that is relevant for comparing the effects of the homophilous and 

unstructured networks on diffusion is the level of subjects’ participation in each of the experimental 

conditions.  Figure S9 shows the level of attrition in unstructured (blue) and homophilous (red) conditions 

over the seven week study.  By the end of the study, over 80 percent of subjects were still participating in 
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each condition.  There is no statistical difference in the level attrition across conditions.  The null 

hypothesis that both curves were drawn from the same distribution cannot be rejected (p>0.5, using the 

Kolmogorov-Smirnov test). 

 

Figure S9. Subject attrition over seven weeks 

An additional consideration for evaluating the level of exposure among obese and non-obese 

individuals is the level of exposure at the start of the study.  Figure S10 shows the exposure levels for 

obese and non-obese individuals in both conditions at the beginning of week 1.  Exposure among non-

obese individuals was similar across conditions.  However, obese individuals had, on average, more than 

double the level of exposure in the unstructured networks than they had in the homophilous networks, 

indicating a baseline expectation for greater adoption among obese individuals in the unstructured 

networks.  
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Figure S10.  Fraction of exposed individuals at the start of the study (Week 1). 

We were also interested in determining whether specific homophilous characteristics were 

influential in affecting individuals’ willingness to adopt the behavior.  However, due to the 

interdependencies of behavior within a network context, adoption dynamics cannot simply be aggregated 

across individuals.  To address this issue, we used each independent network as a single observation of 

the adoption process.  This approach prevents us from confounding interdependent factors that occur 

within a network context, and thus from spuriously inferring correlations between homophilous 

characteristics and the spread of behavior.   

Each of the ten networks in the experiment constitutes a single, independent observation of the 

dynamics of behavioral diffusion.  We measured the effect of homophilous ties on the transmission of 

behavior by calculating the frequency of diffusion on homophilous ties above (or below) random chance 

in each network, n.  We then used each network as an independent observation, and evaluated the 

statistical likelihood that all 10 independent networks would exhibit similar diffusion dynamics along 

homophilous ties.  
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The effect of homophilous ties on diffusion was evaluated relative to the baseline assumption that 

all ties were equally influential, i.e., that adoption was random.  We first determined the total number of 

“active” ties in the network:  Ties that linked an adopter to a “susceptible” individual (i.e., someone who 

had not yet adopted).   This number is the total number of ties along which influence was possible in a 

given network (Sn).  For a given homophilous characteristic x (e.g., Gender, Age, BMI, Fitness Level, 

Favorite Exercise, or Diet Preference), we counted the total number of active ties in the network on which 

individuals were homophilous on x (Hxn).  The ratio of these two numbers is the fraction of active ties in 

the network that were homophilous on x:  

n

xn
xn S

H
R    (1) 

Multiplying the fraction of active ties that were homophilous on x (Rxn)by the total number of ties 

along which adoption ultimately occurred (Gn) yields the number of homophilous ties along which 

adoption is expected to occur by random chance: 

nxnn GRxE )(  (2) 

For each network, n, The difference between the actual number of homophilous ties on x along 

which the behavior spread (Axn), and the number of homophilous ties on x along which the behavior is 

expected to spread by random chance (E(x)n), is the frequency of diffusion above (or below) random 

chance (Fxn): 

nxnxn xEAF )(  (3) 

Table S4 provides the actual and expected number of homophilous ties to transmit behavior for 

each of the profile characteristics, indicating the frequency of diffusion across homophilous ties above (or 

below) random chance for all 10 networks (Fx1, Fx2, . . . Fx10).   
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Table S4. Actual and expected (by random chance) diffusion of behavior across homophilous ties 

Figure S11 shows the means and 95% confidence intervals for the frequency of diffusion across 

homophilous ties (above random chance) for all networks.  If the 95% confidence interval is entirely 

above zero, there is a significant correlation between tie homophily and the spread of behavior between 

individuals.   
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Figure S11.  Means and 95% confidence intervals are shown for the likelihood of diffusion above random 
chance across homophilous ties.   

 

Individuals who received signals from neighbors who were homophilous on BMI had a 

significantly greater chance of adopting the behavior than those who received signals from neighbors who 

were not homophilous on BMI (P<0.05, using the Student’s T test).  Similarly, when signals were 

received from neighbors who were homophilous on both Gender and BMI, participants were significantly 

more likely to adopt the behavior than when signals came from neighbors who were not homophilous on 

Gender and BMI (P<0.01) .  While these correlations do not imply causal effects of these characteristics, 

they do provide some direction for understanding how behaviors spread in homophilous networks.   An 

individual who observes adoption by a homophilous neighbor – e.g., who has the same Gender and 

similar BMI – may perceive the behavior to be more relevant, and will therefore be more likely to adopt it 

(6, 12).  This suggests that a minimal level of overlapping characteristics between social contacts may be 

sufficient to significantly improve the spread of behaviors through social networks.  

 We used the Student’s T- test to evaluate the significance of the differences between the 

frequency of diffusion across homophilous ties and random chance.  The T-test provides an efficient 
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estimate of the deviation of the distribution of diffusion above random chance from a distribution with 

zero mean (i.e., from a distribution that does not significantly differ from random chance).  The T-test 

relies on an assumption of normality in the underlying distribution.  Using the Jarque-Bera test, we 

confirmed that the distributions reported in Table S4 and Figure S11 satisfy the normality assumption. 

Finally, we also conducted a test of the robustness of our seeding strategy, using less healthy 

individuals.  This test of alternative seeding strategies was conducted in week 4.  In both conditions of 

Trial 1, two near neighbors of the seed individual were selected (one with 30 > BMI > 26 and one with 

BMI > 30) as additional sources of diffusion for the health innovation.  Just as with the initial seeding, 

this procedure sent messages to these nodes’ neighbors, offering them the opportunity to adopt the diet 

diary.  This resulted in two adoptions – one healthy, one obese – both in the homophilous network.  The 

effects were marginal, and all reported results were qualitatively the same before and after the reseeding; 

however, these results indicate that across all of the measures for exposure and adoption, the findings for 

less healthy seeds were substantively the same as those for the healthy seeds:  Among both the obese and 

non-obese populations, there was greater exposure and adoption in the homophilous network than in the 

unstructured network.  This suggests that regardless of the seeding strategy one chooses, homophilous 

networks can increase both overall adoption, and adoption among the least healthy members of the 

population, and further indicates that less healthy seeds may also promote adoption among healthy 

individuals within a homophilous context.  This test supports the conclusion that the findings from the 

healthy seeding strategy are robust to alternative assumptions about the seeding procedure.    

 

Model of Homophily 

In what follows, we develop a simple model of homophily and behavioral influence based on our 

experimental findings.  We assume that social influence between connected individuals i and j 
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(i.e., )(iNj ) depends upon having a sufficient number of health characteristics in common that j’s 

adoption behavior will be relevant for i (6, 12).  For simplicity, each individual i is assigned a vector of F 

characteristics ( ,,2,1 ... ifii  ), where each characteristic if has a binary value [0,1].  The overlap 

between two individuals is simply the fraction of traits that i and j have in common (32, 37), 

F
jiO

F

f
jfif

 1

,

),(


.  In order for a neighbor j to influence actor i, the overlap between i and j needs 

to be greater than or equal to some minimal level of similarity, Si.  Each neighbor j with sufficient overlap 

is included in i’s evaluation of whether to adopt, while a neighbor j without sufficient overlap with i does 

not affect i’s decision.  The unit step function, u(x), in equation S1, is defined as 


 


otherwise

xif
xu

0

01
)(  

such that when overlap between two neighbors is greater than or equal to Si (i.e., iSjiO ),( ), 1)( xu , 

otherwise 0)( xu .  As stated in equation S1, i will adopt a behavior (Ai =1) if enough homophilous 

neighbors have already adopted it to trigger i’s decision threshold ( i ):   

(S1)  
 





 

  

otherwise

SjiOuif
A iAiNj i

i
j

0

)),((1
1),(


 

To simulate the dynamics of the model presented in equation S1, we used networks of size N=72 and trait 

vectors of size F=100.  Each individual was initialized with a randomly chosen binary value at each locus 

in its trait vector, ]1,0[if .  For each actor i, the minimal level of similarity, Si, that is required in order 

for a neighbor j to influence i was drawn from the normal distribution: ),(~ 2NS , with 525.0  

and 01.02  .  Individual thresholds, i , were assigned such that an individual was given a threshold 

1i  with probability p = 0.39, and a threshold of 2i  with probability 1-p.  Individuals were then 

placed at random into a hexagonal lattice network identical to the networks used in the experimental 
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study.  Homophilous networks were rearranged according to the “assortative interaction” algorithm 

described above (homophily was measured according to overlap across all F traits).  We then initialized a 

single “seed node” to begin the diffusion process, and observed the dynamics of adoption in the 

homophilous and random networks.  Simulations were run until they converged (all runs converged).  The 

results reported in figure 3 are averaged over 200 independent runs of the model.   

The results (Fig. 3) indicate that increased influence of homophilous ties can provide a plausible 

explanation for the significant differences observed across experimental conditions.  This simple model 

suggests that treating social influence as relational – based on tie homophily – rather than based on 

individual characteristics (4,15), offers a reasonable approximation of the empirically observed adoption 

dynamics.  However, future experimental studies are needed in order to identify the causal effects of 

specific homophilous characteristics on the individual likelihood of adopting health innovations.  

To test the robustness of our results for different assumptions about the structure of the social 

network, we constructed an alternative network topology in which tightly clustered groups were 

connected by sparse “weak ties” (Fig. S12).   
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Figure S12.  Complex network topology with heterogeneous neighborhood structures 

This topology resembles empirical network structures in which there is heterogeneity in bridge width 

across neighborhoods – typically with wide bridges and strong ties within clusters, and narrow bridges 

and weak ties across clusters (34).  We then simulated our model of the empirical diffusion dynamics 

(Equation S1, same parameter settings as above) on this topology under both experimental conditions:  

homophilous and unstructured populations (38).  Consistent with our experimental findings, the results 

(Fig. S13) show that adoption levels in the homophilous networks (solid circles) were significantly 

greater than those in the unstructured networks (solid triangles) (P<0.001, using the Mann-Whitney U 

test) – indicating that our experimental results are robust for more heterogeneous network structures.  

Additionally, consistent with the findings from earlier research (23,27), reduced bridge width in the 

complex networks resulted in lower overall levels of adoption (in both conditions) as compared with the 

clustered lattice networks (Fig. 3).  Taken together, these findings suggest that the network-level thesis 

that homophily inhibits diffusion may derive from a conflation of topological effects with those of 

homophily.  While homophily promotes adoption, network attenuation can reduce overall behavior 

spread.  Consequently, observational reports of lower levels of adoption across homophilously structured 

populations may be due to tie attenuation between groups – the lack of wide bridges between diverse 

segments of the population – rather than to barriers introduced by homophilous neighborhoods. 
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Figure S13.  Average adoption levels for the model given in equation S1 (averaged over 200 realizations, 

bars show standard errors) for homophilous (solid circles) and unstructured (solid triangles) populations 

embedded in a complex network topology 

 

Limitations of the Study 

As with all experiments, the scientific controls that made this study possible also present 

limitations.  Most notably, the empirical setting for this study is an on-line community, which differs in 

significant ways from real face-to-face communities.  The explanatory mechanisms that are excluded 

from the present study (e.g., shared personal history and interpersonal affect) are important factors that 

can promote social influence in real world settings.  Our conclusions that homophily can promote 

adoption are supported by the fact that these variables are often positively correlated with homophilous 

relationships (11,12).  However, further work is needed to determine the complex interaction of these 

variables with one another.  An additional constraint of our design is that other forms of homophily (such 
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as value homophily – shared attitudes and beliefs) were excluded from this study in order to identify the 

effects of status homophily (i.e., shared external characteristics) on the dynamics of diffusion.  In the 

context of health behaviors, we expect that status homophily is highly salient for individual decision 

making due to the strong correlations between external characteristics (e.g., Gender, Age, and BMI) and 

health concerns (3,7,20,21).  

 

Ensuring Data Quality 

In all experiments, researchers must take steps to ensure that the subjects do not violate the design 

of the experiment, either through accidental behaviors, or through malicious intent.  This can be more 

difficult in on-line experiments, where researchers have less control over the behavior of the subjects than 

in traditional laboratory settings.  We took several steps to ensure that the data collected were sound. 

 For instance, we designed the diet diary so that it would be unknown to subjects before they 

enrolled in the experiment.  The only way for subjects to find out about the diet diary was through 

notifications in their personal health dashboards.  However, even if a subject found out about the diet 

diary outside the context of the experiment, it would have been impossible for a subject to adopt the diet 

diary until one of her health buddies had adopted it.  This is because the only way subjects could sign up 

for the diet diary was by clicking on a peer notification within their personal health dashboards.   After 

signing up, all subsequent access to the diary was also exclusively through subjects’ personal health 

dashboards, which were login protected, and associated with unique user ID’s. 

 An additional concern with an on-line study is that subjects might re-register by returning to the 

initial study website, and their data might be re-entered into the experiment.  This possibility was 

eliminated by constraints on the GetFit sign up procedure, which collected identifying information on 

each individual and prevented the same individual from signing up more than once.  However, as an 
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additional measure, we placed cookies into the browser of each subject who joined the study, which 

automatically populated the sign-up pages with their user information if they tried to re-register.  This 

“electronic signature” prevented a subject’s information from being used to create a new entry into the 

experiment.  Users without cookie-compatible browsers (or who had cookies disabled) were not able to 

sign up for the study.  A subject with malicious intent could figure out how to destroy the cookies in her 

web-browser and then attempt to re-enroll for the study.  However, in order to do this, the subject would 

have to re-enroll in the GetFit Program, and would also have to by-pass the GetFit security efforts to 

prevent re-enrollment.  Additionally, we checked each new user’s profile against existing users (from the 

list of already enrolled subjects), and prevented a new user from registering for the study if her profile 

information or email data matched those of an existing user.  After the two-week registration period was 

completed, we double-checked all the user profiles and did not detect any patterns that revealed the 

presence of this kind of malicious behavior.   
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